

Definition: Nitrogen cycle

- The nitrogen cycle is the biogeochemical cycle that describes the transformations of nitrogen and nitrogen-containing compounds in nature.
- It is a cycle which includes gaseous components

Importance of Nitrogen

- All life requires nitrogen-compounds, e.g., Proteins and nucleic acids.
- Air, which is 79% nitrogen gas (N₂), is the major reservoir of nitrogen.
- But most organisms cannot use nitrogen in this form.

The Processes of the nitrogen cycle

- Conversion of N₂ fixation
- Assimilation
- Ammonification
- Nitrification
- Denitrification
- Anaerobic ammonium oxidation

Conversion of N₂

- The conversion of nitrogen (N₂) from the atmosphere into a form readily available to plants and hence to animals and humans is an important step in the nitrogen cycle, that determines the supply of this essential nutrient.
- There are four ways to convert N₂ (atmospheric nitrogen gas) into more chemically reactive forms
 - Biological fixation
 - Industrial nitrogen fixation
 - Combustion of fossil fuels
 - Other processes e.g. lightning

Assimilation

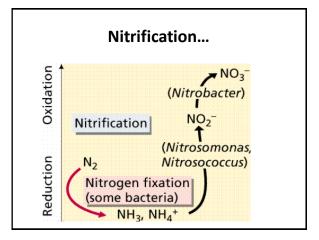
- Plants can absorb nitrate or ammonium ions from the soil via their root hairs.
- If nitrate is absorbed, it is first reduced to nitrite ions and then ammonium ions for incorporation into amino acids, proteins, nucleic acids (DNA), and chlorophyll

Ammonification

- · When a plant or animal dies, or an animal excretes, the initial form of nitrogen is organic.
- Bacteria, or in some cases, fungi, convert the organic nitrogen within the remains back into ammonia, a process called ammonification or mineralization.

Amino acids + $1^{1}/_{2}O_{2} \rightarrow CO_{2} + H_{2}O + NH_{3}$

NH₃ +CO₂ + H₂O soil enzymes & H₂O CO(NH₂)₂ ureā


Nitrification

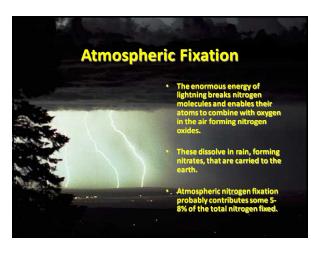
- The conversion of ammonia to nitrates is performed primarily by soil-living bacteria and other nitrifying bacteria.
- The primary stage of nitrification, the oxidation of ammonia (NH₃) is performed by bacteria such as the Nitrosomonas species, which converts ammonia to nitrites (NO_2^{-}).
- Other bacterial species, such as the Nitrobacter, are responsible for the oxidation of the nitrites into nitrates (NO₃).
- Nitrites need to be converted to nitrates because accumulated nitrites are toxic to plant life

Nitrification...

- This involves two oxidation processes
- The ammonia produced by ammonification is an energy rich substrate for *Nitrosomas* bacteria
- They oxidise it to nitrite: NH₃ + 1¹/₂O₂ → NO₂⁻ + H₂O
- This in turn provides a substrate for *Nitrobacter* bacteria oxidise the nitrite to nitrate:

 $NO_2^{-} + \frac{1}{2}O_2 \rightarrow NO_3^{-}$

Denitrification


- Denitrification is the reduction of nitrates back into the largely inert nitrogen gas (N₂), completing the nitrogen cycle.
- This process is performed by bacterial species such as *Pseudomonas* and *Clostridium*.
- They live deep in soil and in aquatic sediments where conditions are anaerobic. These anaerobic bacteria can also live in aerobic conditions

Anaerobic ammonium oxidation

- In this biological process, nitrite and ammonium are converted directly into dinitrogen gas.
- This process makes up a major proportion of dinitrogen conversion in the oceans.

Conversion of N₂ (Nitrogen fixation)

- Nitrogen fixation is the process by which nitrogen is taken from its relatively inert molecular form (N₂) in the atmosphere and converted into nitrogen compounds such as:
- Ammonia (NH₃),
- nitrate (NO₃⁻) and
- nitrogen dioxide (NO₂)

Atmospheric Fixation...

Lightning causes reaction with O₂ to form NO₃⁻ as follows:

• When a voltage of 30,000 volts passes through the air, nitric oxide is formed.

N₂ + O₂ ----> 2 NO

• This nitric oxide is next oxidised to nitrogen peroxide by atmospheric oxygen

2NO + O₂ ----> 2 NOO

Atmospheric Fixation...

 This peroxide when washed with rain water comes down as nitric acid, HNO₃ and is introduced into the soil.

NOO +H₂O \rightarrow 2HNO₃

- This nitric acid reacting with CaCO₃, K_2CO_3 , $(NH_4)_2CO_3$ are converted respectively to Ca(NO₃)₂, KNO₃ and NH₄NO₃.
- E.g. $2HNO_3 + K_2CO_3 \rightarrow 2KNO_3 + CO_2 + H_2O$
- Annually, 100 million tons of nitric acid are produced by lightning.

Biological Fixation

- The ability to fix nitrogen is found only in certain bacteria.
- Some symbiotic bacteria (most often associated with leguminous plants) and some free-living bacteria are able to fix nitrogen as organic nitrogen.
- An example of mutualistic nitrogen fixing bacteria are the *Rhizobium* bacteria, which live in legume root nodules.
- An example of the free-living bacteria is *Azotobacter*

Biological Fixation

Industrial Fixation

- Under great pressure, at a temperature of 600°C, and with the use of a catalyst, atmospheric nitrogen and hydrogen (usually derived from natural gas or petroleum) can be combined to form ammonia (NH₃).
- The Haber-Bosch Process

$N_2 + 3H_2 \rightarrow 2NH_3$

 Ammonia can be used directly as fertilizer, but most of its is further processed to urea and ammonium nitrate (NH₄NO₃).